It is also possible that neural mechanisms, such as the inability

It is also possible that neural mechanisms, such as the inability to fully activate PF-3084014 muscles, may contribute to the loss of strength following eccentric exercise [6, 7]. Thus, several factors contribute to the manifestation of eccentric-induced

symptoms of muscle damage and DOMS. As a result, studies have examined a variety of treatments to reduce damage or improve recovery after eccentric exercise, such as therapeutic modalities (i.e., massage, cryotherapy, and stretching), pharmacological treatments (i.e., non-steroidal anti-inflammatory drugs), and dietary supplementation. Lund et al. [8] showed no effects of passive stretching on muscle strength or muscle pain after eccentric-induced muscle damage in the leg extensors. Tokmakidis et al. [9] demonstrated that ibuprofen (400 mg every 8 hours for 48 hrs) decreased muscle soreness at 24 h after eccentric exercise, however, there were no differences in the recovery of muscle strength or range of motion compared to placebo. In addition, Connolly et al. [10] found that tart Vorinostat datasheet cherry juice supplementation attenuated the losses in muscle strength and decreased muscle pain after eccentric-induced muscle damage when compared to a placebo. Consequently, treatments that may

reduce inflammation can help to improve recovery or alleviate the symptoms associated with exercise-induced muscle damage. Anatabine (ANA) is a minor alkaloid with a similar chemical structure to nicotine that

is found in the tobacco plant and the Solanaceae family of plants (i.e., green tomatoes, eggplant, and peppers). Recent studies have observed anti-inflammatory effects of ANA [11, 12]. For example, ANA lowered NFkB activation and limited amyloid beta production, both of which are associated with plaque deposits in the brain, in Alzheimer’s disease [11] and the over-production of brain inflammatory Phloretin cytokines [12]. ANA has also been shown to prevent the production of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) induced by lipopolysaccharides in human blood and in mice [12]. Theoretically, therefore, ANA may attenuate the decreases in muscle strength following eccentric-induced muscle damage by reducing inflammation and the production of pro-inflammatory cytokines, since muscle strength is commonly identified as the single best non-invasive indicator of muscle damage [2]. For instance, Beck et al. [13] demonstrated attenuated losses in muscle strength with protease supplementation following eccentric-induced muscle damage, which was explained by the potential anti-inflammatory effects of the protease supplement. Therefore, using the same experimental model as Beck et al.

Comments are closed.