As shown in Figures
1 and 2, the pulmonary tuberculosis patients formed a clear cluster that was separate from the healthy participants based on their microbiota. The phyla Bacteroidetes and Fusobactera were significantly underrpresented in pulmonary tuberculosis patients compared with healthy participants, while Actinobacteria was significantly overrepresented in pulmonary tuberculosis patients. Moreover, bacteria from the AZD6738 mw phylum Deinococcus-Thermus were widely distributed in pulmonary tuberculosis patients (15/31), but rarely found in healthy participants, and the phyla Aquificae, Caldiserica, Gemmatimonadetes, Lentisphaerae, Planctomycetes, Thermodesulfobacteria and Verrucomicrobia were unique to pulmonary tuberculosis patients. Figure 1 shows the genera Klebsiella, Pseudomonas and Acinetobacter see more were more common in pulmonary tuberculosis patients,
and we postulated that these bacteria may aggravate the syndrome of pulmonary tuberculosis in these patients. Table 1 shows that the genera Phenylobacterium, Stenotrophomonas, Cupriavidus, Caulobacter, Pseudomonas, Thermus and Sphingomonas were unique to and widely distributed in patients with pulmonary tuberculosis. The respiratory tract microbiota of pulmonary tuberculosis patients, who suffer from chronic infection, might be important in the pathogenicity of this disease. The variety of bacterial genera especially the presence of some abnormal genera in the sputum of pulmonary tuberculosis patients suggested that the pulmonary tuberculosis patient lung is an ecological niche that can support the growth of a high variety of bacteria, especially certain abnormal bacteria. These abnormal genera reportedly widespread in the environment, and some of them have even been reported to be associated with some infectious diseases [22–27]. Coenye et al also reported the isolation of unusual bacteria from the respiratory secretions of cystic fibrosis patients [22]. However, there are few reports on whether these organisms can cause human disease. The lower respiratory tract is an open system and can communicate
Rucaparib chemical structure freely with the environment. We speculated that, in pulmonary tuberculosis patients, the lung micro-environment may become more susceptible to colonisation by some foreign microbes. The host response to pathogens is characterised by rapid recognition combined with strong innate (i.e., inflammatory) and adaptive immune responses, enabling microbial eradication often at the cost of significant tissue damage. Furthermore, the host is constantly facing the challenge of discriminating between symbiotic and pathogenic bacteria to organise an appropriately an adaptive response [28]. These responses lead to the extensive fibrosis associated with recurring infections, possibly leading to a decreased clearance of lymph and lymph-associated particles from the infected region [29].