The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show
that the region DMXAA solubility dmso flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane Nocodazole chemical structure fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect
to requirements for the folding of native HAs and length restrictions for membrane fusion activity.”
“Glial cell line-derived PU-H71 concentration neurotrophic factor (GDNF) exerts its biological effects via a multi-component receptor
system including the ligand binding receptor – GDNF family receptor-alpha 1 (GFR alpha 1) and the signaling receptor – RET tyrosine kinase. Recently, the neural cell adhesion molecule (NCAM) has been identified as an alternative signaling receptor for GDNF. The purpose of this study was to investigate whether NCAM could mediate the protective effect of GDNF on injured dopamine (DA) neurons and to determine which cytoplasmic signal molecule associated with NCAM was activated while GDNF performing this effect. The results showed that the phosphorylation of NCAM-associated Fyn was upregulated with GDNF treatment, and this upregulation was inhibited by pre-treatment with the NCAM function-blocking antibody. Moreover, pre-treatment with the antibody could abolish the effect of GDNF on promoting the neurite outgrowth of these DA neurons, except for the effect of GDNF on promoting the expression of tyrosine hydroxylase (TH) in these DA neurons. These results suggest that NCAM is involved in the promotive effect of GDNF on the neurite outgrowth in lesioned DA neurons, but not involved in the promotive effect of GDNF on TH expression in these neurons. (C) 2008 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.