Risk

stratification is at the base of patient selection

Risk

stratification is at the base of patient selection. The Association of Coloproctology of Great Britain and Ireland (ACPGBI) study of large bowel obstruction caused by colorectal cancer identified four important predictors of outcome – age, ASA grade, operative urgency, and Dukes’ stage [5]. Similar results were shown by other studies [14, 20]. Recent large studies demonstrated that mortality rate after PRA of obstructive right colon cancer is higher than mortality after PRA for OLCC [5, 14, 21], whereas one study did not show any difference [22]. This findings could be explained by the fact that almost all patients with right-sided Go6983 concentration obstruction are treated by one stage resection and anastomosis, whereas patients with OLCC are carefully

selected according to risk. Keeping in mind these considerations the HP could be appropriate for patients deemed to be at high risk. Moreover the same considerations could explain the results of a questionnaire survey of American Gastrointestinal Surgeons in 2001 who responded that 67% would perform HP and 26% a simple colostomy in the high-risk patient [23]. Otherwise we should assume a lack of adherence to the literature evidence in the clinical practice or difficulty in changing from surgical ABT-737 supplier tradition. The experience and subspecialty of surgeon seems to be a primary factor in the choice of anastomosis or end colostomy. It has been shown that primary anastomosis is more likely to be performed by colorectal consultants rather than general surgeons, and by consultants rather than unsupervised trainees [20]. The

ACPGBI study has shown that the mortality rate following surgery was similar between ACPGBI and non-ACPGBI members [5]. This result can be challenged as the study was done on a voluntary basis. The Large Bowel Cancer Project showed that registrars had a higher mortality rate than consultants after primary resection for obstruction in the late 1970 s, and this result has remained unchanged 20 years later in the Zorcolo study [1, 20]. Other studies have also shown that unsupervised trainees had significantly greater morbidity, mortality and anastomotic dehiscence rates [10, 24]. Recommendation:HP 3-oxoacyl-(acyl-carrier-protein) reductase offers no overall survival benefit compared to segmental colonic resection with primary anastomosis in OLCC (Grade of recommendation 2C+); HP should be considered in patients with high surgical risk (Grade of recommendation 2C) Primary resection and anastomosis (PRA): total or subtotal this website colectomy (TC) vs. segmental colectomy (SC) There is only one RCT, write out SCOTIA study group (Subtotal Colectomy versus on Table Irrigation and Anastomosis) in 1995, that compared the TC (47 patients) vs. SC (44 patients) and ICI. There were no differences in mortality, overall morbidity and rates of single complications (superficial and deep surgical site infections, anastomotic leakage).

All seal

All seal isolates included in the current study (n = 6) had serotype Ia, suggesting Fludarabine manufacturer a human origin. In humans, ST23 is common as vaginal-rectal carrier strain in adults although it may also cause neonatal PRIMA-1MET invasive disease [1, 13]. Given the predominant niche of ST23 in humans, it is conceivable that its presence in seals is due to microbial contamination of surface water. ST23 probably has the broadest known host range of all S. agalactiae STs. Both homeothermic and poikilothermic

species can be affected, including humans, cattle, dogs, crocodiles and seals [6, 14, 15]. Despite the high prevalence of ST23 in humans, its wide host range and its ability to affect aquatic mammals and semi-aquatic reptiles, there are no reports on occurrence of ST23 in fish. This may reflect the relatively IWR-1 order small number of fish isolates characterized to date or it may indicate true biological differences, e.g. an inability to infect fish. Challenge studies using ST23 are required to assess its ability to cause disease in fish. If ST-associated differences in virulence are confirmed, comparative genomic analysis of human,

fish, seal and bovine isolates may help to identify molecular correlates of virulence. S. agalactiae ST260 and ST261 are associated with fish but not with humans The final subpopulation in our collection consisted of non-haemolytic strains of S. agalactiae. Non-haemolytic S. agalactiae may cause invasive disease such as endocarditis in adult humans [42] but no MLST data on non-haemolytic human isolates could be found. The prevalence of non-haemolytic S. agalactiae among carriage isolates has been estimated at 5 to 8%, although this

value may be underestimated in studies that use β-haemolyis as a diagnostic criterion for identification of the organism [43]. All Etofibrate non-haemolytic isolates in our collection belonged to serotype Ib, a serotype that has been associated with β-haemolytic and non-haemolytic human isolates [1, 37]. The subpopulation of non-haemolytic serotype Ib isolates in our study encompassed all fish isolates that did not originate from Southeast Asia, suggesting an association between geographic origin and strain. The association with host species and geographic origin is not absolute, as β-haemolytic serotype Ib isolates and ST261 have also been reported from frogs [37, 44] and ST261 has been reported in fish from Indonesia [45]. This is the first report of ST261 in aquarium fish, which originated from Australia. Outbreaks of streptococcosis in wild fish have occurred repeatedly in Australia in the past few years [21]. The isolates causing disease in Queensland grouper and other reef fish were non-haemolytic with serotype Ib, suggesting that they belong to the fish-associated subpopulation of S. agalactiae.

The next step in the validation

The next step in the validation NSC23766 cost involved assessment of the randomness of insertions, the possible occurrence of multiple transposition events in the same cell, and the degree of saturation of each gene with the PND-1186 in vivo mobile element. A first answer to these questions was provided by the precise mapping of the boundaries of the mini-Tn5 insert in one dozen randomly picked KmR colonies coming from either procedure.

To this end, we employed the PCR method of Das et al [33] with arbitrary primers ARB6 and ARB2 (Table 2) along with a second set of cognate primers that hybridize either end of the mini-transposon (ME-I and ME-O, Table 2). For determining the site of insertion of the transposons we employed in each case primer sets for both ends (ME-I and ME-O). Figure S2 (Additional File 1) shows just one example of using this strategy for mapping the mini-Tn5 insertions at the ME-O end with arbitrary PCR. The twenty-four sequences yielded similar results that allowed both to locate insertions within the genome of P. putida and to rule out double or multiple transposition events (Additional File 1, Table S1). 9 out of the 12 insertions occurred in structural genes scattered

through the genome whereas 3 of them ended up within intergenic regions. The sequencing of a good number of transpositions of the mini-Tn5 element born by pBAM1 (and its variant pBAM1-GFP) allowed us to examine possible biases of the mobile element for specific PKC inhibitor sequences. Analysis of fifty-five 9-bp of the host genome duplicated after mini-Tn5 insertion [6] revealed that this was not the case (Additional File 1, Figure S3) and that insertion of the synthetic mini-transposon(s) was virtually medroxyprogesterone random. Table 2 Primers used in this study Name Sequence 5′ → 3′ Usage Reference ARB6 GGCACGCGTCGACTAGTACNNNNNNNNNNACGCC PCR round 1 [59] ARB2 GGCACGCGTCGACTAGTAC PCR round 2 [59] ME-O-extF CGGTTTACAAGCATAACTAGTGCGGC PCR round 1 This work ME-O-intF AGAGGATCCCCGGGTACCGAGCTCG

PCR round 2/sequencing This work ME-I-extR CTCGTTTCACGCTGAATATGGCTC PCR round 1 This work ME-I-intR CAGTTTTATTGTTCATGATGATATA PCR round 2/sequencing This work GFP-extR GGGTAAGTTTTCCGTATGTTGCATC PCR round 1 This work GFP-intR GCCCATTAACATCACCATCTAATTC PCR round 2/sequencing This work To obtain a more accurate measurement of the frequencies and diversity of insertions, we employed a strategy that relied on the appearance of a known visual phenotype. For this, we used a derivative of P. putida KT2442 strain called P. putida MAD1, which bears in its chromosome an m-xylene responsive Pu-lacZ transcriptional fusion that is activated by the σ54-dependent protein XylR, which is encoded also in its genome (Figure 3A; [34]) The Pu promoter has a very low basal expression level but becomes strongly activated when P. putida MAD1 is exposed to m-xylene and yields blue colonies.

Aquat Microb Ecol 37:295–304 Tianpanich K, Prachya S, Wiyakrutta

Aquat Microb Ecol 37:295–304 Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2011) Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J Nat Prod 74:79–81PubMed Vadassery J, Oelmüller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions. Plant Signal Behav 4:1024–1027PubMed Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383PubMed van Oppen

MJH, Leong JA, Gates RD (2009) Coral-virus interactions: a double-edged sword? Symbiosis 47:1–8 Varughese selleck products T, Rios N, Higginbotham S, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Rios LC (2012) Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett 53:1624–1626PubMed Verma SA, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998)

Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. GDC-0068 nmr Mycologia 90:898–905 Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMed Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012a) Bioactive

metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93:1231–1239PubMed Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X (2012b) Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 19:364–368PubMed Webster NS, Taylor MW (2012) Marine sponges ID-8 and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346PubMed Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675–686PubMed Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal www.selleckchem.com/products/sbe-b-cd.html secondary metabolome. Org Biomol Chem 6:1895–1897PubMed Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A, Liu C, Li W, She Z, Lin Y (2012) Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicas. Bioorg Med Chem Lett 22:3017–3019PubMed Yang G, Sandjo L, Yun K, Leutou AS, Kim G-D, Choi HD, Kang JS, Hong J, son BW (2011) Flavusides A and B, antibacterial cerebrosides from the marine-derived fungus Aspergillus flavus.

0% (w/v) Na3C6H5O7 · 2H2O solution (1 80 and 2 25 mL) was quickly

0% (w/v) Na3C6H5O7 · 2H2O solution (1.80 and 2.25 mL) was quickly added to the solution. After boiling for 20 min, the solutions were cooled to room temperature (25°C) with vigorous magnetic stirring. The prepared AuNP solutions were stored at 4°C until ready for use. The nanoparticle concentrations of the prepared two samples were determined by measuring their extinction at 520 and www.selleckchem.com/products/lazertinib-yh25448-gns-1480.html 524 nm, respectively. The prepared nanoparticles were characterized using a JEM-2010 FEF transmission www.selleckchem.com/products/XL880(GSK1363089,EXEL-2880).html electron microscope (TEM; JEOL Ltd., Akishima, Tokyo, Japan). Bright-field images of at least 200 particles deposited onto a carbon-coated copper grid (Xinxing

Braim Technology Co., Ltd., Beijing, China) were measured using ImageTool graphics software to approximate the average particle PERK modulator inhibitor diameter. The optical densities of the two AuNP samples at 520 and 524 nm, respectively, were measured using a Lambda 35 UV–vis spectrophotometer (Perkin Elmer, Waltham, MA, USA). Colorimetric determination

of PEG MW Fully PEG-coated AuNPs were formed by the addition of 3-mL PEG solution (15 mg/mL) to 1 mL of the as-prepared AuNP solution. Immediately after adding the PEG solution, the suspension was ultrasonicated (KQ-100DY, Kun Shan Ultrasonic Instruments Co., Ltd., Jiangsu, China) for 10 min and then incubated over 16 h with gentle agitation using an orbital shaker at low speed (<1 Hz) to allow the polymer to adsorb to the nanoparticles. The PEG-coated nanoparticles were collected by centrifugation (12,000 rpm, 20 min) and resuspended in water three times to wash out the free PEG molecules and produce the fully coated AuNPs used in subsequent examinations. Subsequently, 1-mL aliquots of PEG-coated AuNP solutions were mixed with a certain volume (40, 50, or

60 μL) of 10.0% (w/v) NaCl solution at room temperature (25°C) for 30 s, followed second by recording of their absorption spectra using the Lambda 35 UV–vis spectrophotometer after 10 min. Chromatographic determination of PEG MW SEC measurements were performed using a Waters 515 liquid chromatography system configured with an Optilab rEX refractive index (RI) detector (Wyatt Technology, Santa Barbara, CA, USA). Separations were performed using three size exclusion columns (SB804HQ, SB803HQ, and SB802.5HQ, Shodex, Japan) in series. PEG samples (100 μL) were run at 5 mg/mL concentrations in aqueous solution. The running buffer contained 0.05% (w/v) NaN3. A flow rate of 0.5 mL/min was used, and samples were characterized using RI detection (internal temperature 30°C). The columns and the buffers were used at the same temperature. Multi-angle laser light scattering (MALLS) measurements were used to perform analytical scale chromatographic separations for the absolute MW determination of the principal peaks in the above SEC/RI measurements.

We have focused on the pathways and processes primarily affected

We have focused on the pathways and processes primarily affected by fosfomycin. In contrast to other genome-wide profiling studies of pathogen responses to antimicrobial

substances, we have studied the response to low concentrations of antimicrobial agent early after its Selleckchem Barasertib addition. An innovative data analysis approach, complemented by newly devised visualization tools, pathway analysis and meta-analysis of similar experiments, enabled us to identify differentially expressed gene groups and pathways, and to conclude that the response of the bacterium to fosfomycin is not only time but also concentration dependent. Results and discussion ITF2357 price The experiment was designed to enable detection of primary effects of fosfomycin treatment, as opposed to the cell death related effects

observed after prolonged exposure to high drug concentrations. The longest time of exposure was chosen to be 40 min, which is approximately one cell cycle. Two concentrations of fosfomycin were used, 1 μg/ml and 4 μg/ml, which affected bacterial growth only slightly (results not shown). The samples were processed and the data obtained analyzed according to strict protocol as shown schematically in Figure 1. Figure 1 Experimental Caspase-independent apoptosis workflow outlining the microarray data analysis procedure. Time and concentration dependent effects of fosfomycin C1GALT1 The profile of differentially expressed genes varied substantially with time following treatment with fosfomycin. After ten minutes, only a small proportion of genes were significantly differentially expressed (Figure 2). This first time point was too short to detect global changes at the level of gene

expression. The reaction to fosfomycin became more evident after 20 min and 40 min of incubation. The greatest number of differentially expressed genes was found at 4 μg/ml fosfomycin concentration, after 40 min incubation (t40c4) (Figure 2 and Figure 3). Not surprisingly, at both concentrations, the later time points were more similar to one another than to the time point 10 min of incubation in terms of common differentially expressed genes (Figure 2). Figure 2 Venn diagrams of differentially expressed genes in fosfomycin treated vs. control S. aureus cultures. Circles show numbers of differentially expressed genes (UP- upregulated, DOWN- downregulated) 10, 20 and 40 minutes after treatment with 1 μg/ml (left) and 4 μg/ml (right) of fosfomycin. Figure 3 Differentially expressed genes corresponding to TIGRFAM protein superfamilies. The percentage of differentially expressed genes (upper panel – upregulated genes, lower panel – downregulated genes) vs.

On the other hand, the emission decay

On the other hand, the Torin 2 in vitro emission decay Etomoxir time of STE should rather be in the nanosecond range.

However, the nature of STE in SiO2 is not clear at the moment. Nevertheless, we believe that emission at 1.6 eV originates mainly from aSi-NCs where the recombination is due to transitions between the tails of local density of states (LDOS) related to aSi-NCs rather than to the band-to-band excitonic transitions like in Si-NCs. One of the arguments strengthening our hypothesis can be seen in Figure 1c,d where the VIS emission peak position has been monitored with temperature ranging from 10 to 500 K for two excitation wavelengths. The PL peak position shows abnormal blueshift with increasing temperature. Usually, the PL peak position for unalloyed semiconductors shows a redshift with increasing temperature in accordance with Varshni’s formula [43] shown also in Figure 1b with parameters typical for bulk Si. The temperature dependence of the PL peak position shown in Figure 1d is rather similar to the S-shaped phenomenon observed due to localized states caused by potential fluctuations in semiconducting alloys [44]. This should be a similar case for amorphous clusters. This is mainly because the tail states (N tail) of aSi-NCs can be approximated as an exponential distribution [45], (1) Based on Equation 1, the carrier density trapped at

localized tail states (n tail) can be estimated using the Fermi-Dirac statistics, (2) where f(E) is the Fermi probability Amylase function defined as f(E) = [1 + exp(E Selleckchem EPZ015666 - E F /kT)]-1, where k is Boltzmann’s constant and T is the ambient temperature. Thus, at a low temperature, carriers relax to the lowest levels within the tails of LDOS. However, when the temperature

increases, carriers move to higher lying levels and recombine at higher energies. Moreover, due to the increased role of non-radiative channels at a high temperature, the emission decay time is reduced, and thus, carriers can recombine from higher levels, also moving the emission band towards higher energies. Thus, the observed emission band at 1.6 eV can be related mainly to aSi-NCs. However, we cannot exclude additional contributions to the observed emission from Si-NCs. From Figure 1, we can clearly see the redshift of the total VIS emission with increasing Si content. Based on the above results, the observed shift can be explained as due to changes in aSi-NC sizes (redshift due to quantum confinement effect), changes in number of defect states making contributions to tails of LDOS (blue- or redshift), relative contribution of emission bands from matrix-related defect states, or Si-NC- and aSi-NC-related emission. Moreover, increasing strain at the Si-NCs/SiO2 interface with Si atomic percent should also be included as it has been shown by us recently elsewhere [46].

[20]; therefore, it seems plausible that early feeding post-damag

[20]; therefore, it seems plausible that early feeding post-damaging exercise increased the efficacy of the intervention. This is somewhat conjectural and would serve as an interesting question for future research to ascertain the optimal strategy for BCAA supplementation. Regardless of whether the loading

phase and timing of the supplementation post-exercise was effective in increasing the bioavailability of BCAA, there is still a stark difference in the total supplementation volume (88 vs. 140 g). The larger quantity of BCAA we provided might partly account for the difference between studies in damage indices (MVC and CK). We based our supplementation regimen on

previous work that showed a positive effect [16, 26] and propose that positive effects beyond attenuation of muscle soreness buy MAPK Inhibitor Library (i.e., recovery of muscle function) may need a more immediate bioavailability and greater quantity of BCAA than those used previously. There are two limitations from the study, which need to be acknowledged. Firstly the lack of specific dietary control might have led to discrepancies in caloric and, more specifically, protein ingestion between the groups. Although we attempted to control this by asking participants to record food intake during the loading phase and replicate this following the damaging exercise, an approach that has been previous used [11, 21], there was no specific Selleck HDAC inhibitor control between groups. Conceivably discrepancies in protein intake

can affect the bioavailability of the substrate and hence affect protein turnover and ultimately influence the outcome of Progesterone these data. The second limitation is that we used an artificial sweetener with little or no calorific value was used, which will certainly alter the energy balance by around 80 kcal/day, and may be problematic if the placebo group were in energy deficit, but based on the food record sheets this does not seem likely. Although the current investigation has a good degree of external validity, future research might like to consider more rigorous dietary control measures such as; 1) asking participants to weigh food and accurately log food intake; or 2) providing a pre-determined menu for the participants to ensure no discrepancies between and within groups, although this still relies on participant adherence outside the laboratory. selleck chemical Finally, 3) although difficult to facilitate, participants could be housed in an environment where dietary behavior can be imposed and thereby strictly controlled. In summary, these data offer novel information on the application of BCAA supplementation.

[38] pfliF/lacZ/290 fliF-lacZ transcriptional reporter vector, Tc

[38] pfliF/lacZ/290 fliF-lacZ transcriptional reporter vector, Tcr Wingrove & Gober [48] pfliK/lacZ/290 fliK-lacZ transcriptional reporter vector, Tcr Gober & Shapiro [25] Identification of FliX-bound proteins with mass spectrometry About 1.64 g of CNBr-activated sepharose 4B beads (GE Healthcare, Piscataway, NJ, USA) were swelled and washed as recommended by the manufacture and incubated overnight with 36.6 mg of histidine-tagged BMN-673 FliX (FliX-His) that was prepared as previously described [35].

After incubation at 4°C with end-over-end rotation, the bead complexes were alternately washed with acidic buffer (0.1 M acetate, 0.5 M NaCl, pH 4.0) and alkaline buffer (90 mM Tris·Cl, 0.5 M NaCl, pH 8.5) for 3 cycles. find more Such prepared sepharose-FliX complexes were then conditioned by PBS buffer (0.1 M sodium phosphate, 0.15 M NaCl, pH 7.2) and stored at 4°C for later use. Meanwhile, 5 liters of C. crescent LS107 culture was harvested by centrifugation, resuspended in 100 ml of PBS buffer, lysed by French Press, and centrifuged at 26,690 g for 1 h. The supernatant was mixed with the above sepharose-FliX complexes and incubated at 4°C for overnight with gentle rocking. Sunitinib ic50 Cell extract was then removed by

centrifugation. The pellet containing the sepharose bead complexes was washed with 20 ml of PBS buffer for three times and resuspended in 5 ml of the same buffer. An aliquot of 100 μl was removed and boiled with loading buffer for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The gel was visualized with Coomassie staining. The apparent bands were excised, partially digested with trypsin, and were analyzed by electrospray ionization (ESI)-ion trap mass spectrometry at Stanford University

http://​mass-spec.​stanford.​edu/​. Stability assays of FliX and FlbD Protein synthesis in cultures grown to mid-log phase was inhibited by addition of chloramphenicol to a final concentration of 3 mg/ml. One milliliter of cell culture was taken at 0, 15, 30, and 45 min after the addition of the antibiotic. Cell pellets were electrophoresed in 12% (w/v) polyacrylamide gels and were analyzed using anti-FlbD or anti-FliX antibodies. Site-directed mutagenesis of fliX A fragment of 894 bp covering the coding sequence of fliX and its Epacadostat concentration promoter region was amplified by PCR from C. crescentus chromosome and was inserted into pBBR1MCS to give raise to pZXfliX, which was then used as the template to create fliX mutants.

011, P = 0 009) In addition, MAGE-A3/4

011, P = 0.009). In addition, MAGE-A3/4 Captisol mouse positive IHCC had a higher recurrence rate (17/24) than negative subgroup (30/65, P = 0.038). There was no statistically significant correlation found between individual or combined CTA expression and any other clinicopathological traits. Correlation between CTAs expression and overall survival The correlation of clinicopathological parameters and individual or combined CTA expression with overall survival was further investigated. As shown in Table 3, univariate analysis showed that overall survival significantly correlated with TNM stage, lymphnode metastasis, resection margin, differentiation and tumor recurrence but not

with gender, age, tumor size and number, vascular invasion and perineural invasion. Table 3 Univariate analyses of Nepicastat cost prognostic factors

associated with overall survival (OS) Variable Category No. of patients P Gender female vs. male 31 vs. 58 0.587 Age < 60 vs. ≥60, years 19 vs. 70 0.532 TNM stage 1/2 vs. JPH203 manufacturer 3/4 34 vs. 55 0.007 Tumor size ≥5 cm vs. < 5 cm 55 vs. 34 0.690 Differentiation well or mod vs. poor 26 vs. 63 0.008 Resection margin R0 vs. R1/2 56 vs. 33 0.008 Tumor number single vs. multiple 58 vs. 31 0.385 Vascular invasion with vs. without 42 vs. 47 0.227 Perineural invasion with vs. without 33 vs. 56 0.736 Lymph node metastasis with vs. without 38 vs. 51 0.001 Tumor recurrence with vs. without 47 vs. 42 0.022 MAGE-A1 Positive vs. negative 26 vs. 63 0.116 MAGE-A3/4 Positive vs. negative 24 vs. 65 0.009 NY-ESO-1 Positive vs. negative 19 vs. 70 0.068 1 CTA positive

with vs. without 52 vs. 37 0.001 2 CTA positive with vs. without 14 vs. 75 0.078 3 CTA positive with vs. without 3 vs. 86 0.372 Patients with MAGE-A3/4 positive tumors had a significantly poorer outcome Metalloexopeptidase compared to those without MAGE-A3/4 expression. MAGE-A1 and NY-ESO-1 also demonstrated the same trend but did not reach statistical significance. Interestingly, negative expression in all CTAs correlated with a better prognosis than at least one CTAs expression, meanwhile, two or three CTAs expression had no impact on survival (Figure 3, Table 3). COX proportional hazard model analysis showed that at least one CTA expression was an independent prognostic indicator for IHCC, whereas the association of MAGE-A3/4 with a shorter survival failed to persist in the multivariate analysis (Table 4). Figure 3 Correlation between individual or combined CTA expression and survival. Kaplan-Meier survival curves performed according to CTAs expression.(A) MAGE-A1; (B) MAGE-A3/4; (C) NY-ESO-1; (D) at least one CTA positive; (E) two CTAs expression; (F) with three CTAs expression. Table 4 Multivariate analyses of factors associated with overall survival (OS) Variable HR 95% Confidence Interval P value     Lower Upper   1 CTA positive 0.524 0.298 0.920 0.024 MAGE-A3/4 0.897 0.505 1.594 0.711 Differentiation 0.447 0.263 0.758 0.003 TNM stage 1.122 0.597 2.110 0.721 Lymph node metastasis 0.389 0.207 0.732 0.